3D-printed wood 3D-printed wood 3D-printed wood

Grown to Measure: Can 3D-Printed Wood Prevent Deforestation?

A method for growing wood-like materials with specific properties and shapes could pave the way towards 3D-printed wood and offer an alternative to industrial forestry, which has severe effects on the global climate and environment and eliminates about 10 million hectares of forest every year. The ability to make “customizable timber” in a laboratory setting would reduce waste in manufacturing and allow forests to remain untouched as a measure to mitigate climate change.

Scientists at MIT have demonstrated how “wood-like plant material” can be grown in a lab from cell cultures in a way that tailors their material properties and shapes to specific purposes. In the first step, they extracted cells from the leaves of young Zinnia elegans plants. After being allowed to grow in a liquid medium for two days, the cells are placed in a gel-based nutrient medium. This contains hormones that can be adjusted to give the cells certain physical and mechanical properties such as density and stiffness. As such, they behave somewhat like stem cells, according to the researchers.

Moreover, using 3D bioprinting techniques, the plant materials could one day be grown into individual, artificial shapes, sizes, and forms that would be difficult or impossible to achieve with traditional agricultural methods. This means that little waste would be produced when processing the wood-like material into furniture or other purposes for human use.

“The idea is that you can grow these plant materials in exactly the shape that you need, so you don’t need to do any subtractive manufacturing after the fact, which reduces the amount of energy and waste. There is a lot of potential to expand this and grow three-dimensional structures,” said Ashley Beckwith, a recent PhD graduate at MIT and lead author of a research paper published in the journal Materials Today.

A 3D printer can extrude the cell culture gel solution in the desired pattern in a petri dish, where it incubates for three months, maturing at a speed that is about two orders of magnitude faster than a tree’s natural growth to maturity. During this process, lower hormone levels resulted in plant materials with lower density, while higher concentrations of hormones in the nutrient broth yielded denser and stiffer material.

More research is needed to study how these lab-grown plant materials can be lignified, i.e., how they can be made more wood-like through deposits of lignin polymer in their cell walls. The scientists also hope to be able to transfer and adapt the novel growth method to other tree species with commercial value, like pine, as a way of reducing deforestation.

Did you enjoy this article?
You can find more on our Supertrends Pro app. Sign up for a 30-day free trial and find all the innovations and scientific discoveries relevant to you and your organization in one place.

[Source]

Sustainability


Chris Findlay

I'm a journalist, editor, and translator based in Zurich, Switzerland. I write about technology and future timelines at supertrends.com, where I also help expand the community as Expert Relationship Manager.

Leave a Reply

Join us

    

Sign up for our Newsletter

Subscribe

Supertrends AG, Erlenstrasse 16, 6300 Zug